Category Archives: Featured Articles

Nobel Prize in Physics for 2010

ScienceDaily (Oct. 5, 2010) — The Royal Swedish Academy of Sciences has awarded the Nobel Prize in Physics for 2010 to Andre Geim and Konstantin Novoselov, both of the University of Manchester, “for groundbreaking experiments regarding the two-dimensional material graphene.”

A thin flake of ordinary carbon, just one atom thick, lies behind this year’s Nobel Prize in Physics. Geim and Novoselov have shown that carbon in such a flat form has exceptional properties that originate from the remarkable world of quantum physics.

Graphene is a form of carbon. As a material it is completely new — not only the thinnest ever but also the strongest. As a conductor of electricity it performs as well as copper. As a conductor of heat it outperforms all other known materials. It is almost completely transparent, yet so dense that not even helium, the smallest gas atom, can pass through it. Carbon, the basis of all known life on earth, has surprised us once again.

Geim and Novoselov extracted the graphene from a piece of graphite such as is found in ordinary pencils. Using regular adhesive tape they managed to obtain a flake of carbon with a thickness of just one atom. This at a time when many believed it was impossible for such thin crystalline materials to be stable.

However, with graphene, physicists can now study a new class of two-dimensional materials with unique properties. Graphene makes experiments possible that give new twists to the phenomena in quantum physics. Also a vast variety of practical applications now appear possible including the creation of new materials and the manufacture of innovative electronics. Graphene transistors are predicted to be substantially faster than today’s silicon transistors and result in more efficient computers.

Since it is practically transparent and a good conductor, graphene is suitable for producing transparent touch screens, light panels, and maybe even solar cells.

When mixed into plastics, graphene can turn them into conductors of electricity while making them more heat resistant and mechanically robust. This resilience can be utilised in new super strong materials, which are also thin, elastic and lightweight. In the future, satellites, airplanes, and cars could be manufactured out of the new composite materials.

This year’s Laureates have been working together for a long time now. Konstantin Novoselov, 36, first worked with Andre Geim, 51, as a PhD-student in the Netherlands. He subsequently followed Geim to the United Kingdom. Both of them originally studied and began their careers as physicists in Russia. Now they are both professors at the University of Manchester.

The Big Bang Theory

The theory that the universe began in a state of extremely high density and has been expanding since some particular instant that marked the origin of the universe. The big bang is the generally accepted cosmological theory; the incorporation of developments in elementary particle theory has led to the inflationary universe version. The predictions of the inflationary universe and older big bang theories are the same after the first 10−35 s. See also Inflationary universe cosmology.

Two observations are at the base of observational big bang cosmology. First, the universe is expanding uniformly, with objects at greater distances receding at a greater velocity. Second, the Earth is bathed in the cosmic background radiation, an isotropic glow of radiation that has the characteristics expected from the remnant of a hot primeval fireball.

Tracing the expansion of the universe back in time shows that the universe would have been compressed to infinite density approximately 8–16 × 109 years ago. In the big bang theory, the universe began at that time as a so-called big bang began the expansion. The big bang was the origin of space and time.

In 1917, Albert Einstein found a solution to his own set of equations from his general theory of relativity that predicted the nature of the universe. His universe, though, was unstable: it could only be expanding or contracting. This seemed unsatisfactory at the time, for the expansion had not yet been discovered, so Einstein arbitrarily introduced a special term—the cosmological constant—into his equations to make the universe static. The need for the cosmological constant seemed to disappear with Hubble’s discovery of the expansion, though the cosmological constant has subsequently reappeared in some models.

Further solutions to Einstein’s equations, worked out in the 1920s, are at the basis of the cosmological models that are now generally accepted. These solutions indicate that the original “cosmic egg” from which the universe was expanding was hot and dense. This is the origin of the current view that the universe was indeed very hot in its early stages.

What is String Theory

Think of a guitar string that has been tuned by stretching the string under tension across the guitar. Depending on how the string is plucked and how much tension is in the string, different musical notes will be created by the string. These musical notes could be said to be excitation modes of that guitar string under tension.

In a similar manner, in string theory, the elementary particles we observe in particle accelerators could be thought of as the “musical notes” or excitation modes of elementary strings.

In string theory, as in guitar playing, the string must be stretched under tension in order to become excited. However, the strings in string theory are floating in spacetime, they aren’t tied down to a guitar. Nonetheless, they have tension. The string tension in string theory is denoted by the quantity 1/(2 p a’), where a’ is pronounced “alpha prime”and is equal to the square of the string length scale.

If string theory is to be a theory of quantum gravity, then the average size of a string should be somewhere near the length scale of quantum gravity, called the Planck length, which is about 10-33 centimeters, or about a millionth of a billionth of a billionth of a billionth of a centimeter. Unfortunately, this means that strings are way too small to see by current or expected particle physics technology (or financing!!) and so string theorists must devise more clever methods to test the theory than just looking for little strings in particle experiments.

String theories are classified according to whether or not the strings are required to be closed loops, and whether or not the particle spectrum includes fermions. In order to include fermions in string theory, there must be a special kind of symmetry called supersymmetry, which means for every boson (particle that transmits a force) there is a corresponding fermion (particle that makes up matter). So supersymmetry relates the particles that transmit forces to the particles that make up matter.

Supersymmetric partners to to currently known particles have not been observed in particle experiments, but theorists believe this is because supersymmetric particles are too massive to be detected at current accelerators. Particle accelerators could be on the verge of finding evidence for high energy supersymmetry in the next decade. Evidence for supersymmetry at high energy would be compelling evidence that string theory was a good mathematical model for Nature at the smallest distance scales.

Physics in Ancient Times

Aristotle (Greek: Ἀριστοτέλης, Aristotélēs) (384 BCE – 322 BCE), a student of Plato, promoted the concept that observation of physical phenomena could ultimately lead to the discovery of the natural laws governing them. He wrote the first work which refers to that line of study as “Physics” (Aristotle’s Physics). During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times, natural philosophy slowly developed into an exciting and contentious field of study.

Early in Classical Greece, that the earth is a sphere (“round”), was generally known by all, and around 240 BCE, Eratosthenes (276 BCE – 194 BCE) accurately estimated its circumference. In contrast to Aristotle’s geocentric views, Aristarchus of Samos (Greek: Ἀρίσταρχος; 310 BCE – ca. 230 BCE) presented an explicit argument for a heliocentric model of the solar system, placing the Sun, not the Earth, at the centre. Seleucus of Seleucia, a follower of the heliocentric theory of Aristarchus, stated that the Earth rotated around its own axis, which in turn revolved around the Sun. Though the arguments he used were lost, Plutarch stated that Seleucus was the first to prove the heliocentric system through reasoning.

In the 3rd century BCE, the Greek mathematician Archimedes laid the foundations of hydrostatics, statics and the explanation of the principle of the lever. In his work On Floating Bodies, around 250 BCE, Archimedes develops the law of buoyancy, also known as Archimedes’ Principle. The astronomer Ptolemy wrote the Almagest, a comprehensive astronomical text that formed the basis of much later science.